

amphibia

 amphibia – 22. Jahrgang, Heft 2/2023. Zeitschrift der Arbeitsgruppe Urodela und der Deutschen Gesellschaft für Herpetologie und Terrarienkunde (DGHT) e.V.

ISSN 1619-9952

Schriftleitung: PD Dr. Wolf-Rüdiger Grosse, Zentralmagazin Naturwissenschaftliche Sammlungen der Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle/Sa., Domplatz 4, Email: wolf.grosse@zoologie.uni-halle.de.

Layout: Andrea K. Hennig, Raustr. 12, 04159 Leipzig, Telefon 0341-2682492, E-Mail: hennig@photobox-graphics.de

amphibia erscheint zweimal jährlich. Für unaufgefordert eingesandtes Material kann keine Gewähr übernommen werden. Die Redaktion behält sich Kürzungen und journalistische Überarbeitungen der Beiträge vor. Mit Verfassernamen gekennzeichnete Beiträge geben nicht unbedingt die Meinung der Redaktion wieder. Nachdruck nur mit Genehmigung der Schriftleitung gestattet (Adresse siehe oben). Ehrenmitglieder der AG Urodela sind Dr. Jürgen Fleck, Dr. Wolf-Rüdiger Große, Paul Bachhausen.

Coverbild: Schistometopum thomense. Foto: S. Voitel

Weitere Kontakte www. ag-urodela.de

Dr. Wolf-Rüdiger Grosse

(Schriftleitung/Redaktion amphibia/Mitglied Vorstand AG Urodela)

Akazienweg 5

D-06188 Landsberg/OT Queis

Tel. 034602/51755

E-Mail: wolf.grosse@gmx.net

Dr. Uwe Gerlach (Vorsitzender AG Urodela)

Im Heideck 30

D-65795 Hattersheim

E-Mail: Duamger@yahoo.de

SEBASTIAN VOITEL (Stellvertretender Vorsitzender AG Urodela)

Spangenbergstraße 81

D-06295 Eisleben

Email: sebastian.voitel@t-online.de

Kristina Burchardt (Schatzmeister In AG Urodela)

Eichenweg 18

D-86573 Obergriesbach.

Email: kristina.burchardt@gmail.com

4 KAMIL D. SZEPANSKI

Suche nach ungewöhnlichen Kalifornischen Riesensalamandern Dicamptodon ensatus in der Nähe von Santa Cruz

- 8 Norbert Schneeweiss, Daniel Timm & Hans-Peter Rettig †
 Neotene Kammmolche in einer Neuruppiner Tiefgarage
- 14 WOLF-RÜDIGER GROSSE & HANS-JÜRGEN ENDE Vor 91 Jahren - die erste deutsche Molchschau in Halle (Saale)

20 SEBASTIAN VOITEL

Die westlichen Blindwühlen aus der Gattung Schistometopum (BOCAGE 1873)

26 PHILIPP GRUNDTNER

Chinesische Riesensalamander (*Andrias* cf. *davidianus*) in Schauhaltungen der letzten 70 Jahre in Deutschland und Österreich: Geschichte mit Verbindung zur privaten Haltung

35 Wolf-Rüdiger Grosse

AG Urodela amphibia – Magazin – Jubiläum

Suche nach ungewöhnlichen Kalifornischen Riesensalamandern *Dicamptodon ensatus* in der Nähe von Santa Cruz

In den Jahren 2019 und 2020 hatte ich das regelmäßige Vergnügen im Silicon Valley arbeiten zu dürfen. Dankenswerter Weise waren meine Tage dort sehr geregelt und so konnte ich die Feierabende dafür nutzen, die dortigen Sa-

lamander-Arten zu suchen. Eines Tages im März 2020 sollte es gen Santa Cruz gehen. Das war lediglich 45 Minuten Fahrt entfernt und mit der Lage am Pazifik auch attraktiv, um den Abend zu genießen.

Abb. 1: Eine normal gefärbte Larve von Dicamptodon ensatus aus Santa Cruz. Alle Fotos: K. Szepanski

Abb. 2: Ensatina esch
scholtzi war häufig unter Steinen am Bachrand zu finden.

amphibia, **22**(2), 2023 5

Abb. 3: Eine ungewöhnlich dunkel gefärbte Larve von Dicamptodon ensatus aus Santa Cruz.

Abb. 4: Batrachoseps attenuatus waren einfach und häufig zu finden.

Der Kalifornische Riesensalamander ist eine Salamanderart aus der Familie der Ambystomatidae. Er ist im Westen der Vereinigten Staaten in Kalifornien endemisch. Barry Sinervo hat 2006 eine Population von *Dicamptodon ensatus* beschrieben, die in einer Höhle lebt und sich von den Tieren an der Oberfläche in der Färbung unterscheiden soll. Zudem sollen die Tiere aus der Höhle zur Neotenie neigen. Wenn das nun kein spannendes Ziel für den Feierabend ist!

Zusammen mit Phillip Tomaschke habe ich mich also gegen 17 Uhr aufgemacht die Tiere zu suchen. Wir kamen bei Tageslicht an und haben auf einer Weide vor dem eigentlichen Ziel schon mal eine Südliche Krokodilschleiche Elgaria multicarinata gefunden. Die Krokodil- oder Alligatorschleichen (Gerrhonotinae) sind eine im mittleren und südlichen Nordamerika, in Mittelamerika und in Kolumbien lebende Unterfamilie der Schleichen (Anguidae), die gut entwickelte Beine besitzen. Nach dieser Begegnung ging es in den Mischwald aus Eichen und Mammut-Bäumen. Die Bäume haben einen derart dichten Wuchs, dass es im Wald deutlich dunkler war als auf der offenen Weide kurz zuvor. Im Bach wuchsen keinerlei sichtbare Pflanzen - vermutlich durch den Lichtmangel. Am Bachrand standen Farne und Moose. Drehte man die Steine und Baumstämme randlich gelegen um, konnte man die Lungenlosen Salamander Ensatina eschscholtzi und Batrachoseps attenuatus und auch Kalifornische Gelbbauchmolche Taricha torosa finden.

Obwohl die Sonne noch über dem Horizont stand und der Himmel wolkenfrei war, tat man gut daran eine Taschenlampe zu verwenden, um im Bach nach Salamandern zu suchen. So fanden wir recht zügig die ersten Larven von *Dicamptodon*. Diese waren gewöhnlich gefärbt und gut

zwischen den Kieseln getarnt. Wir sind dem Bach aufwärts gefolgt, immer auf die Höhle zu, in der die besondere Population leben soll. Etwa 200 m von der Höhle entfernt wurden wir dann fündig. In dem tieferen, schattigeren Teilen des Baches konnten wir Larven sehen, die ungewöhnlich gefärbt waren: sie waren dunkelgrau, zum Teil einfarbig ohne Anzeichen einer Maserung. Die Tiere waren erst halbwüchsig und die größten waren etwas unter 20cm lang. Für gewöhnlich sind Kalifornische Riesensalamander dieser Größe bereits geschlechtsreif - wenn auch nicht voll ausgewachsen. Es fehlte der Nachweis ausgewachsener paedomorpher Tiere, um die Neotenie der Population nachzuvollziehen. Sie scheint jedoch nicht völlig abwegig zu sein.

Im Anschluss ging es dann zur Höhle. Der Einstieg wirkt wie eine betonierte Zisterne, die Graffitis innen lassen aber schnell durchblicken, dass dies ein Treff junger Leute war. Je tiefer wir in die Höhle herabstiegen, umso lehmiger und glitschiger wurde der Boden. Der letzte Abstiegsteil war sehr steil und wir hatten weder Steigeisen noch Seile dabei - hatten wir doch mit steinigem Untergrund gerechnet. Also kehrten wir sicherheitshalber um und kamen lehmverschmiert wieder heraus. Wir haben dann den Bach oberhalb der Höhle nach weiteren Salamandern abgesucht, aber keine Dicamptodon mehr gefunden. Dafür viele schöne Salamander der Gattungen Ensatina und Batrachoseps.

Eingangsdatum: 15.10.2022 Lektorat: I. Kraushaar

Autor

Kamil D. Szepanski Danziger Str. 13 73432 Aalen Email: kamil@lungenlos.de

Neotene Kammmolche in einer Neuruppiner Tiefgarage

(Gekürzter Nachdruck der Veröffentlichung "Neotenie, "Plan B" beim Teichmolch (*Lissotriton vulgaris*) Teil 1: Population in einer Tiefgarage. – RANA, 23: 4-27")

Nachweise neotener Molche finden sich in der faunistischen Literatur vor allem für den Teichmolch (*Lissotriton vulgaris*) und den Bergmolch (*Ichthyosaura alpestris*) und hin und wieder auch für den Fadenmolch (*Lissotriton helveticus*) (VAN GELDER 1973, FELDMANN et al. 1981,

BERGER & GÜNTHER 1996, BUSCHENDORF & GÜNTHER 1996). Vom Kammmolch (*Triturus cristatus*) wird dagegen verhältnismäßig selten über Neotenie berichtet (THIESMEIER et al. 2009).

In der Dunkelheit einer dauerhaft mit Regenwasser gefluteten Tiefgarage einer Bauruine in Neuruppin/Brandenburg entwickelte sich in einem Zeitraum von mehr als 2 Jahrzehnten eine neotene Teilpopulation des Teichmolches mit immerhin 1.162 im gesamten Zeitraum erfasste Individuen

Abb. 1: Einstieg in die Dunkelheit über einen stark vermüllten Treppenschacht. Foto: N. Schneeweiss

(Schneeweiss et al. 2022, 2023). Mit den Teichmolchen vergesellschaftet lebten und reproduzierten in geringerer Zahl in dem Kellergewässer auch 308 im Gesamtzeitraum erfassten Kammmolchindividuen. Allerdings beschränkte sich bei den Kammmolchen der Anteil neotener Individuen auf wenige Einzeltiere. Der Bericht basiert auf einer beiläufigen Datensammlung im Rahmen einer Tier- und Naturschutz-motivierten Rettungsaktion (Schneeweiss et al. 2022). Diese zielte darauf ab, möglichst viele Amphibien der überdimensionalen Tierfalle zu entnehmen und sie in naturnahe Habitate der Umgebung zu überführen. Die Beobachtungsreihe endete abrupt mit dem Abriss der Bauruine im Jahr 2020. Nachfolgend wird von einer mit Teichmolchen vergesellschafteten Population von Kammmolchen in einer mit Regenwasser gefluteten Tiefgarage einer Bauruine berichtet.

Hintergrund und Methodisches

Alle Informationen zu unserer naturschutzfachlichen Artenhilfsmaßnahme finden sich ausführlich in der Zeitschrift RANA bei Schneeweiss et al. (2022) und gekürzt in einer Zeitschrift amphibia (Schneeweiss et al. 2023).

Zunächst gingen die Akteure davon aus, dass es sich bei der Bauruine um eine tödliche Amphibienfalle handelte. Der Datensammlung zum Molchvorkommen in der Tiefgarage wurde daher kein wissenschaftlich orientiertes Konzept unterlegt. Es handelte sich in erster Linie um eine beiläufig dokumentierte Rettungsaktion (Abb. 1), die im Rückblick leider einige Erfassungslücken in der Zeitreihe und hinsichtlich der Daten zur Populationsstruktur aufweist. Die Kammmolche waren vom Falleneffekt der Bauruine betroffen. Wahrscheinlich verirrten sie sich vor allem auf der Frühjahrswanderung zum Laichgewässer in die Tiefgarage. Hier hielten sie sich sowohl am Gewässergrund als auch auf bzw. in den überfluteten Bauschutthaufen auf (Abb. 2).

Angaben zu den Kammmolchen

Wie die Teichmolche reproduzierten auch die Kammmolche in dem Kellergewässer erfolgreich. Im Frühjahr vorhan-

Abb. 3: Adultes Kammmolchweibchen mit Resten der Kiemenbüschel, linksseitige Kiemen. Foto: N. SCHNEEWEISS.

dene Larven verschiedener Größen hatten dort bereits mindestens einmal überwintert. Neotene Merkmale in Form ausgebildeter äußerer Kiemen fanden sich insgesamt nur bei 2,3 ausgewachsenen Individuen. In diesen Fällen waren die Kiemen nicht mehr so stark ausgeprägt wie bei den neotenen Teichmolchen (Abb. 3). Grundsätzlich neigen Kammmolche im Vergleich zum Teichmolch zu längeren Aufenthalten im Gewässer. Dies betrifft sowohl die Paarungszeit als auch die Überwinterung (THIESMEIER et al. 2009). Nachweise neotener Kammmolche sind dagegen selten (ebd.). Es ist somit davon auszugehen, dass auch metamorphosierte Kammmolche in der Lage waren, längere Zeit in dem gefluteten Keller zu überleben.

Die Überlebens- und (oder?) Reproduktionsrate der Kammmolche war offenbar im Vergleich zum Teichmolch geringer, was die stark abfallende Bestandsentwicklung zum Ende der Untersuchung zum Ausdruck bringt (Abb. 4). Beim letzten Fangtermin am 22.8.2019 wurden lediglich noch 3 metamorphosierte Kammmolche und 13 Larven registriert. Somit waren die stärker zur Neotenie neigenden Teichmolche unter den extremen Lebensbedingungen offenbar erfolgreicher als die Kammmolche. In diesem Zusammenhang sei erwähnt, dass adulte Kammmolche während der Fangaktionen wiederholt juvenile Teichmolche erbeuteten und verzehrten (Abb. 6). Die Körpermaße einiger metamorphosierter Kammmolche sind Tab. 1 zu entnehmen.

	Männchen		subadulte. Individuen (n = 5)		
	Nr. 1	Nr. 2	Min	Max	MW
KRL in mm	69	64	37	54	45,4
SL in mm	55	52	32	45	37
GL in mm	124	116	69	99	82,4
KM in g	7,2	7	1,6	4,8	2,8

Tab. 1: Körpermaße metamorphosierter Kammmolche am 22.8.2019 in der Tiefgarage.

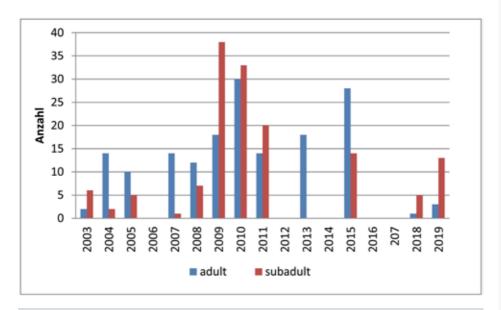


Abb. 4: Fangzahlen der in der Tiefgarage registrierten Kammmolche.

Diskussion

Die Frage nach den Neotenie-auslösenden Faktoren wird immer wieder diskutiert (THIESMEIER & SCHULTE 2010).

Markante und die Neotenie wahrscheinlich befördernde Eigenschaften des Gewässers in der Tiefgarage waren wahrscheinlich die relativ niedrigen Was-

Abb. 5: Adulte Kammmolche erbeuteten während der Fangaktionen sogar fast ausgewachsene Teichmolche. Foto: D. TIMM

Abb. 6: Adulte Kammmolche erbeuteten während der Fangaktionen wiederholt juvenile Teichmolche. Foto: N. Schneeweiss

sertemperaturen, die Nahrungsknappheit und der Lichtmangel. Möglicherweise war das Erreichen der Geschlechtsreife im Larvalstadium die entscheidende Voraussetzung für ein längerfristiges Überleben der Teichmolche unter den extremen Bedingungen unter Tage. In den letzten Jahren setzte sich der Bestand adulter Teichmolche in der Tiefgarage zu über 80 % aus reproduktiven neotenen Tieren zusammen. In einem Zeitraum von 22 bis 23 Jahren hatte sich somit eine überwiegend aus neotenen Tieren bestehende Teichmolchpopulation in der Tiefgarage entwickelt. Mit einer offenbar geringeren Prädisposition zur Neotenie erwiesen sich die am selben Standort anzutreffenden Kammmolche langfristig als weniger erfolgreich. Die regelmäßigen, tier- und naturschutz-motivierten Entnahmen von Molchen wurden zumindest von den Teichmolchen durch erfolgreiche Reproduktion kompensiert. Der Abriss der Bauruine und die damit verbundene Umsiedlung des Restbestandes der Molche beendete die interessante Ansiedlungs- und Entwicklungsgeschichte des Molchvorkommens "unter Tage" - bedauerlicherweise - abrupt. Einige der im vorliegenden Kontext interessanten Fragen sind auf Grundlage unserer eher sporadisch gewonnenen Daten nicht zu beantworten. Zum Beispiel die Frage nach Ernährung und Wachstum der Molche in einem offenbar außerordentlich nahrungsarmen Gewässer. Der Verzehr juveniler Teichmolche durch Kammmolche (s. o.) deutet auf ein hohes Prädationsrisiko durch größere Molche hin. Auch die Fragen nach dem Eintritt der Geschlechtsreife, der Überlebensrate und dem Höchstalter neotener Molche unter den Bedingungen von Finsternis, Kälte und Nahrungsknappheit bleiben für unseren Fall leider unbeantwortet.

Danksagung

Die Autoren danken Manfred Wolf und Anne Grohmann sowie den Freiwilligen, die sich über die vielen Jahre mit großem Engagement an den Fangeinsätzen "unter Tage" beteiligten.

Literatur

BERGER, H. & R. GÜNTHER (1996): Bergmolch – *Triturus alpestris*. – In: Günther, R. (Hrsg.): Die Amphibien und Reptilien Deutschlands. – Gustav Fischer Verlag, Jena: 104-120.

Buschendorf, J. & R. Günther (1996): Teichmolch - *Triturus v. vulgaris.* - In: Günther, R. (Hrsg.): Die Amphibien und Reptilien Deutschlands. - Gustav Fischer Verlag, Jena: 174-195.

FELDMANN, R., BELZ, A. & P. KEL-LER-WOELM (1981): Teichmolch - *Triturus v. vulgaris* (LINNAEUS 1758). – In: FELD-MANN, R. (Hrsg.) (1981): Die Amphibien und Reptilien Westfalens. – Abhandlungen aus dem Landesmuseum für Naturkunde zu Münster in Westfalen, Münster: 63-67.

Gelder, J. J. van (1973): Ecological observations on Amphibia in the Netherlands II. *Triturus helveticus* Razoumowsky: migration, hibernation and neotey. – Netherlands Journal of Zoology, 23: 86-108.

Schneeweiss, N., Timm, D. & H-P. Rettig † (2022): Neotenie, "Plan B" beim Teichmolch (*Lissotriton vulgaris*)?, Teil 1: Population in einer Tiefgarage. – RANA, 23: 4-27.

Schneeweiss, N., Streckenbach, P., Schönbroth, T. & O. Brauner (2022): Neotenie, "Plan B" beim Teichmolch (*Lissotriton vulgaris*)?, Teil 2: Beobachtungen in unterschiedlichen Gewässertypen. – RANA, 23: 28-37.

Schneeweiss, N., Timm, D. & H-P. Rettig † (2023): Neotene Teichmolche in einer Neuruppiner Tiefgarage (Gekürzter Nachdruck der Veröffentlichung "Neotenie, "Plan B" beim Teichmolch (*Lissotriton vulgaris*)? Teil 1: Population in einer Tiefgarage. – RANA, 23: 4-27"). – amphibia 22(1): 14-25.

THIESMEIER, B., KUPFER, A. & R. JEHLE (2009): Der Kammmolch ein "Wasserdrache" in Gefahr. – Beiheft der Zeitschrift für Feldherpetologie 1, Laurenti-Verlag, 160 S.

THIESMEIER, B. & U. SCHULTE (2010): Der Bergmolch im Flachland wie im Hochgebirge zu Hause. – Beiheft der Zeitschrift für Feldherpetologie 13, Laurenti-Verlag, 160 S.

Eingangsdatum: 12.10.2022

Lektorat/Redaktion: I. Kraushaar, Dr. Wolf-Rüdiger Grosse

Autoren

Dr. Norbert Schneeweiss, Landesamt für Umwelt, Naturschutzstation Rhinluch, Nauener Str. 68, 16833 Linum, E-Mail: norbert.schneeweiss@lfu.brandenburg.de

Daniel Timm, Gildenhaller Allee 87 A, 16816 Neuruppin, E-Mail: daniel.timm. opr@gmail.com

Dr. Hans-Peter Rettig †

Vor 91 Jahren die erste deutsche Molchschau in Halle (Saale)

Vom 31. Januar bis zum 14. Februar 1932 konnten die Zoobesucher in Halle an der Saale die wohl erste Molchausstellung in Deutschland bestaunen. Zum damaligen Zeitpunkt war noch recht wenig über die damals rund 160 Arten umfassende Amphibienordnung bekannt.

Die Stadt Halle und die Molchschau

Warum gebührt gerade Halle diese Erstlingsrolle in der Schwanzlurchvivaristik? Sicher kamen vielerlei Zufälle zusammen und das Ergebnis war eben eine sensationelle Ausstellung im Hallenser Zoo (Abb. 1). Zu dieser Zeit bestanden enge Verbindungen zwischen dem Zoologischen Garten mit dem damaligen Direktor Schmidt und den Zoologen der Halleschen Universität. Das Zoologische Institut hatte eine umfangreiche Sammlung lebender Schwanzlurche. Hier forschten viele Wissenschaftler unter Leitung von Bruno Klatt an Amphibien. Darunter war auch der angehende Zoologe Wolf Herre, der im

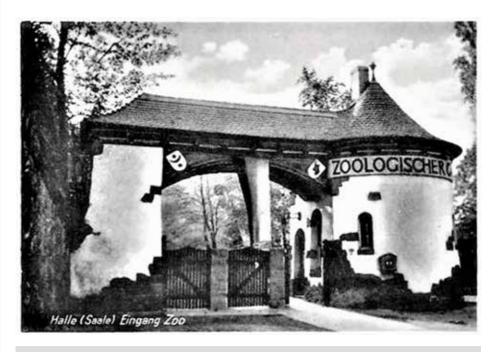


Abb. 1: Postkarte Eingang Zoo Halle um 1930.

Jahre 1932 mit dem Thema "Vergleichende Untersuchungen an den Unterarten des Triturus cristatus Laur." in Halle promovierte. Die Anregungen zu diesem Thema stammten wiederum von dem berühmten Magdeburger Molchforscher Willy Wolterstorff, mit dem er seit Ende 1929 bekannt und bis zu dessen Tod 1943 eng verbunden war (BÖHME 1998). Herre war Mitglied des halleschen Vereins für Aquarien-und Terrarienkunde "Vivarium 1911" und so kam wahrscheinlich im Verein die Idee auf, eine für die damalige Zeit bedeutendste Molchschau zu Beginn des Jahres 1932 ins Leben zu rufen (ENDE 2022). Gestaltet und geleitet wurde die Ausstellung vom Verein "Vivarium" mit Herrn Ellenbeck. Führungen durch diese Sonderschau wurden u.a. auch

von Wolf Herre durchgeführt, der auch eigene Tiere ausstellte. Zur Eröffnung war eigens aus Berlin der Zoodirektor Heck angereist, aus Leipzig kam Karl Max Schneider und am Ende der Ausstellung erschien auch Willy Wolterstorff aus Magdeburg (Abb. 2).

Die Ausstellung im Zoo Halle

Wie die Halleschen Nachrichten Anfang Januar 1932 berichteten, bestach die in den Räumen des Zooaquariums aufgebaute Sonderausstellung durch die "ungemein geschmackvolle äußere Aufmachung und ... durch den aparten Reiz des Dargebotenen". In langer Front stehen die kleinen Bassins und neben jedem kündet eine kleine Tafel von Namen und Art der Insassen. Das



Abb. 2: Gesamtbild der Sonderschau des Vereins "Vivarium" e.V. Halle im Eingangsbereich des Aquariums im Zoo Halle. Reproduktion aus Mitteilungen aus dem Zoologischen Garten Halle, H3

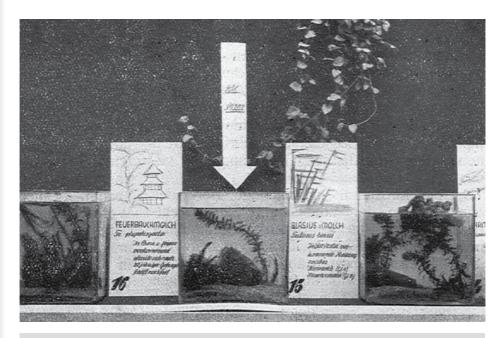


Abb. 3: Beschilderung der Schaubecken, Gestaltung von E. Ellenbeck, Vivarium Halle. Reproduktion aus Mitteilungen aus dem Zoologischen Garten Halle, H3

Schönste aber: auf allen Täfelchen kleine kolorierte Skizzen, die das jeweilige Heimatmilieu der Tiere überraschend charakteristisch wiedergeben. Erstaunlich wie der Ausstellungsleiter A. Ellenbeck hier oft mit wenigen Pastellstrichen eine ausgesprochen künstlerische Bildwirkung zu erzielen vermochte, bei prägnantester Andeutung der jeweils typischen Landschaft". Die Anordnung der Becken, die Kennzeichnung und Beschriftung und die Grafiken mit Bezügen der Arten zu ihrer Umwelt waren für die damalige Ausstellungspraxis in Tierschauen und Zoologischen Gärten neu, beinahe revolutionär würde man heute sagen, und hat die Zuschauer begeistert. Dieser große Erfolg führte dazu, dass die Ausstellung anschließend nach Leipzig in das dortige größere Zooaquarium umgesetzt wurde, wo sie auch verblieb (Abb. 3).

Stelldichein der Molche

Molche aus aller Herren Länder gaben sich in Halle ein Stelldichein. "Da sind nicht nur die 5 Arten Deutschlands, die mit dem allerliebsten winzigen Fadenmolch zugleich den Liliput und Komiker der Molche stellen, da ist der seltene Triturus reiseri, der nur in einem Kratersee Bosniens vorkommt, und der Italiener, der einen leuchtend gelben Streifen als aparten Rückenschmuck besitzt, während der Donaumolch einen starken zackigen Rückenkamm besitzt, Molche aus den Karpaten und Pyrenäen, und selbst ein etwas unsympathischer Dalmatiner, der blinde Grottenmolch, fehlt nicht. Europas schönster Molch? Ein kleiner, ein Mölchlein: der Marmormolch, der ein exquisites grün-braunrot gebatiktes Muster trägt.... Dann noch der mit einer wulstigen Halskrause gezierte grau-grüne Axolotl, der die Lieblingsspei-

Abb. 4: Präsentation der heimischen Schwanzlurcharten. Reproduktion aus Mitteilungen aus dem Zoologischen Garten Halle, H3

se der Mexikaner darstellt ... guten Appetit!" (Hallesche Zeitung 2/1 1932). Auch Bastardformen, wie der Triton blasii (Triturus cristatus Männchen x Triturus marmoratus Weibchen) wurden gezeigt. Dieses Thema wurde damals intensiv in der Literatur behandelt und die lebenden Exemplare in der Ausstellung entsprechend bewundert. Aber auch weitere Molche aus Asien und Amerika waren zu sehen, vom Feuerbauchmolch bis zum Gelbbauchmolch konnten die Besucher die Vielfalt der Schwanzlurche bewundern.

Mitteilungen aus dem Zoologischen Garten Halle

Im 3. Heft des Jahrgangs 1932 der Zeitschrift "Mitteilungen aus dem Zoologischen Garten Halle" erschienen dann zwei Begleittexte zur Sonderausstellung der Molche.

Schwanzlurche und Lebensweise referierte cand. zool. WOLF HERRE. Er weist darin auf die Vielgestaltigkeit dieser Tierordnung mit ihren interessanten Lebensgewohnheiten hin. Wichtig erschien es ihm auch, die Variabilität der heimischen Schwanzlurcharten zu erwähnen und in der Ausstellung zu präsentieren. Erstmals wurden alle um 1930 bekannten Molche der Gattung Triturus und der Gattung Salamandra gezeigt (Kamm- und Bergmolch mit Unterarten!). Ausführlich wird von Herre die Paarung der Wassermolche Gattung Triturus beschrieben. Die Besucher der Ausstellung konnten Teile davon auch im Januar in der Ausstellung beobachten. Zu sehen war auch die Paarung des Kalifornischen Gelbbauchmolchs Diemyctylus torosus (heute Taricha granulosa):" Ganz

anders versucht der Kalifornische Gelbbauchmolch, auch Wasserhund genannt, sein Weibchen gefügig zu machen... Ein seltener Anblick. Das Männchen besitzt keinen Rückenkamm, sondern unterscheidet sich vom Weibchen vor allem durch düstere Färbung und zur Zeit der Brunst durch verbreiterte Vorder- und Hintergliedmaßen. Von hinten nähert sich das Männchen dem umschwärmten Weibchen, plötzlich schnellt es mit einem mächtigen Ruck nach vorn und umklammert mit seinen Vorderbeinen das Weibchen vorn an Rumpf ... selbst ein Mensch hat Mühe sie zu lösen. Bald ergibt sie sich ihrem Schicksal. Nun kommen die Hinterbeine des Männchens in rhythmische Bewegungen: der Leib des Weibchens

wird gleichmäßig massiert und beide Tiere geraten in immer größere Erregung ... Stunden – selbst tagelang währen diese interessanten Spiele. Schließlich findet die Befruchtung statt, über deren Einzelvorgänge wir noch nichts Näheres wissen". Weitere interessante Fortpflanzungsweisen vom Pyrenäenmolch, Rippenmolch, Axolotl oder Feuerbauchmolch werden blumig beschrieben (Abb. 4 und 5).

Über "Wasserhunde" referierte CA-MILLO WOTTAWA, ebenfalls vom Verein Vivarium Halle. In seinem Bericht über Wassermolche beleuchtete er die ganz unterschiedlichen auch heute noch umstrittenen deutschen Namen und verglich sie auch wie damals häufig versucht mit menschlichen Verhaltensweisen. Fütterung und Futterneid werden anschaulich

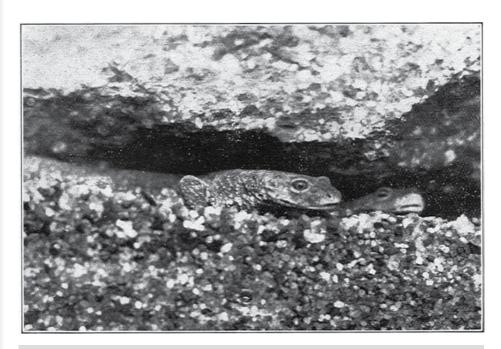


Abb. 5: Schauterrarium mit den Pyrenäenmolch Calotriton asper (damaliges Synonym Euproctus asper). Reproduktion aus Mitteilungen aus dem Zoologischen Garten Halle, H3

Ausstellungsberichte

Erste deutsche Molch-Sonderschau (Saale) im Zoologischen Garten von Halle (Saale)

Die Molch-Sonderschau des Vereins "Vivarium" E. V. in Halle (Saale) war ein voller Erfolg. Die vorgenehne Ausstellungszeit von 8 Tagen mußte erheblich verlängert werden. Stellungszeit von 8 Tagen mußte erheblich verlängert werden. Stellungszeit von 8 Tagen mußte erheblich verlängert werden. Stellungszeit von 8 Tagen mußte erheblich verlängert werden. Direktion des Zoo, den Magistrat der Stadt Halle, sowie die Direktion des Zoo, den Magistrat der Stadt Halle, sowie die gesamte Hallesche Presse eingeladen. Die Regie hat glänzend gekalppt. Nach launigen Begrüßungsworten des Justenlungsschalt vom Zoologischen Garten die Ausstellung in getraue Schmidt vom Zoologischen Garten die Ausstellung und dem Fachmann viel Interessantes gestellte Ausstellung auch dem Fachmann viel Interessantes gestellte Ausstellung auch dem Fachmann viel Interessantes und Seltenes zeigt. Als ersten Besucher konnte er den Leiter und Seltenes zeigt. Als ersten Besucher konnte er den Leiter des Berliner Zoo, Herro Dr. Lutz Heck, durch die onderses behalt überen der Veranstaltung. Durch einen ersten Lungang lobend über die Veranstaltung. Durch einen ersten Kungean behalt werden des Ausstellung der den Keiter des Verlanten des Ausstellungsteren dann mit den Eigentnmichteiten dieser merkwärdigen Geschöpte, die jeden Heckhauserkeiten dieser merkwärdigen Geschöpte, die jeden Heckhauserkeiten die hizzarre Fornu außen den Becken, und neben jedern traut. In langer Front ausden die Becken, und neben jedern traut. In langer Front ausden die Becken, und neben jeden kändere siehe Ausstellung der Tiebe Die den Erstannlich, wie hier der Ausstellung der jeden den Erstannlich, wie hier der Ausstellung der jeden Erstannlich, wie hier der Ausstellung der jeden den Erstannlich, wie hier der Ausstellung der jeden der Schalten der Verein der Verlagen der Schalten der Verein der Verlagen der Verlagen der Schalten der Verein der Verlagen der Verlagen der Schalten der Verein der Verlagen

beschrieben, "Übrigens schadet es ihnen auch nichts, wenn bei solch einer Keilerei ein Bein abgebissen oder abgerissen würde. In einigen Wochen wächst das verlorene Glied wieder nach, eine Regenerationsfähigkeit, um die wir sie wirklich beneiden können". Weiter geht es mit der Haltung und Entwicklung von Teich- und Kammmolch in unseren Gewässern. Auch hier liegt die Betonung auf dem sorgsamen Umgang mit den Tieren und dem Wunsch, die Jugend an derartige Themen heranzuführen, was mit dieser Ausstellung wohl gelungen sein dürfte (Abb. 6).

Abb. 6: Original Ausstellungsbericht aus der "Wochenschrift für Aquarien- und Terrarienkunde", 29. Jahrgang, Nr. 13 (1932).

Danksagung

Für vielfältige Hinweise und Materialien danken wir dem Zoo Halle (Saale) und seiner stellv. Leiterin Fr. K. Albig und dem Verein "Roßmäßler - Vivarium 1906 /Halle und Herrn Dr. D. Hohl. Herrn J. Händel vom ZNS der Universität Halle für die Bearbeitung der Bilder.

Literatur

Вöнме, W. (1998): In memoriam Prof. Dr. Dr. h.c.Wolf Herre (1909-1997) - ein Zoologe mit bedeutendem amphibienkundlichen Werkanteil. - Salamandra 34(1): 1-6.

ENDE, H.-J. (2022): Die erste deutsche Molchschau vor 90 Jahren in Halle. vda-aktuell, 2: 17.

HERRE, W. (1932): Über Schwanzlurche und ihre Lebensweise. - Mitteilungen aus dem Zoologischen Garten Halle, H3: 2-6.

Wottawa, C. (1932): Wasserhunde. -Mitteilungen aus dem Zoologischen Garten Halle, H3: 6.

Eingangsdatum: 12.3.2023 Lektorat: I. Kraushaar

Autoren

PD Dr. Wolf-Rüdiger Grosse

Zentralmagazin Naturwissenschaftliche Sammlungen,

Zoologische Sammlung, Domplatz 4, D-06099 Halle/Saale.

E-mail: wolf.grosse@zoologie.uni-halle.de, wolf.grosse@gmx.net

Hans-Iürgen Ende Zwingerstr. 13, 06110 Halle (Saale) E-Mail: Lthermalis@aol.com

Die westlichen Blindwühlen aus der Gattung Schistometopum (BOCAGE 1873)

Eine 859 km² große Insel im Golf von Guinea ist durch eine geringe Artenzahl, aber einen außergewöhnlichen Endemismus gekennzeichnet (Jones 1994). Dort leben zwei Gymnophiona-Vertreter aus der Familie *Dermophiidae* der Gattung *Schistometopum*.

Diese Insel mit Namen São Tomé liegt 250 km westlich von Gabun und 500 km südlich von Nigeria.

Die Insel São Tomé

Ein stark reliefierter und komplexer Stratovulkan formte vor über 5 Millionen Jahren diese Insel und hob sie bis auf über 2.000 m aus dem Meer (SCHLÜTER 2008). Seither verwittert das vulkanische Material, vorwiegend Basalt, und durch Erosion entstanden tief eingeschnittene Täler in die größtenteils um die 1.000 m hohe Gebirgslandschaft. Mit weiteren vul-

Abb. 1: Schistometopum thomense aus dem Obô Nationalpark oberhalb 800 m ü. NN, 21.04.2022. Foto: S. VOITEL

kanischen Aktivitäten bildete São Tomé die über 1.000 km lange Kamerunlinie, eine Kette von Inseln im Golf von Guinea und Bergen auf dem afrikanischen Festland (Burke 2001). Der äquatoriale, ozeanische Einfluss mit feucht-tropischem Klima bringt eine Jahresdurchschnittstemperatur von 25,5 °C, die bei zunehmender Gebirgshöhe um 0,7 °C pro 100 m abnimmt (CARDOSO & GARCIA 1962). Eine lange Trockenzeit von Juni bis Mitte September und eine kürzere Trockenzeit von nur einigen Wochen, die irgendwo zwischen Mitte Dezember und Mitte März liegt, wechseln sich mit Regenzeiten ab (LAINS 1958).

Warme und feuchte Südwinde bringen Niederschläge, die sich vor allem in den Hochgebieten entladen. Somit entsteht ein markantes Nord-Süd-Gefälle mit Klimazonen von semiarid im Norden bis superhumid im zentralen Gebirge und in der südlichen Region mit bis zu 6.000 mm Niederschlag pro Jahr (DINIZ & MATOS 2002). Zu keiner Zeit hatte die Insel Verbindung zum Festland, auch wenn die Fläche während der letzten Eiszeit infolge der Meeresspiegelabsenkung um 50 % wuchs. Trotz alledem muss es eine günstige Konstellation von verschiedenen Naturereignissen gegeben haben, die salzwasserempfindliche Amphibien auf die Insel verdriften ließ. Man nimmt heute an, dass die sich kreuzenden Süßwasserfahnen dreier großer Flüsse natürliche Flöße in Richtung São Tomé vor sich hertrieben und dort anlandeten (MEASEY et al. 2007).

Der Lebensraum der Blindwühlen

So müssen wohl auch die Vorfahren der hier lebenden Blindwühlen der Gattung Schistometopum auf die Insel gekommen sein. Bis auf einen schmalen Savannenstreifen im Norden der Insel ist Schistometopum über gesamt São Tomé von Meereshöhe bis in eine Höhe von

1.440 m reichlich vorhanden. Der höchste bekannte Fundort ist der Lagoa Amélia. Auf der 3 km² großen Insel Rólas, die etwa 1.100 m südlich von São Tomé liegt, leben ebenfalls Schistometopum. Bevorzugte Habitate sind schattige Primärwälder mit dichtem Unterwuchs und reichlich Totholz. Hier sind sie vor allem in feuchter, lockerer und deshalb gut grabbarer Erde nahe den Bächen unter verrottenden Baumstämmen zu finden. Es gibt Schistometopum aber auch in Schattenwald-, Bananen-, Kakao- und Kaffeeplantagen, besonders wenn diese der Natur überlassen werden und sich dadurch eine Sekundärwaldlandschaft mit einer hohen Dichte an Arten und Pflanzenreichtum gebildet hat. Außerdem sind sie an Weg- und Straßenrändern, an Gemüsefeldern und in Ortschaften zu finden (HAFT & FRAN-ZEN 1996). Bei längeren Trockenperioden dringen Schistometopum tiefer in den Untergrund ein (O'CONNELL et al. 2021). Bereits seit den 1980er-Jahren breiten sich mehr und mehr Ölpalmenplantagenflächen im Südosten und im Süden der Insel aus und haben aktuell etwa eine Größe von 15 km² erreicht. Diese Vernichtung von tropischem Regenwald und der damit einhergehende Verlust an Artenreichtum und Artendichte führt zu einer Verarmung des ganzen Ökosystems (MIKU-LANE 2019) und vertreibt natürlich auch Schistometopum aus ihrem einstigen Verbreitungsgebiet.

Verbreitung von Schistometopum

Heute sind drei Arten aus der Gattung Schistometopum anerkannt. Neben den beiden auf São Tomé vorkommenden Arten Schistometopum ephele (TAYLOR 1965) und Schistometopum thomense (BOCAGE 1873) lebt noch eine weitere Art im weit entfernten Ostafrika. Schistometopum gregorii (BOULENGER 1895) bewohnt Küstengebiete im kenianischen Tana-Fluss-

Abb. 2: Schistometopum thomense x elephe aus der Gegend zwischen Saudade und Santa Luísa, bei etwa 700 m ü. NN, eine leichte Fleckung ist zu erkennen. 22.04.2022. Foto: S. VOITEL

Abb. 3: Schistometopum elephe aus der Nähe des Terra Typicas bei Agua Izé unterhalb 100 m ü. NN, 26.04.2022. Foto: S. VOITEL

Abb. 4: 10 x Schistometopum elephe aus der Nähe von São João dos Angolares unterhalb 100 m ü. NN. 28.04.2022. Foto: S. VOITEL

delta und in einem zweiten Vorkommen zwischen Bagamoyo und dem Rufiji-Fluss in Tansania. Die jüngste Beschreibung einer auf der Insel Fernado Póo (dem heutigen Bioko) im Golf von Guinea stammt aus dem Jahr 1987. Damals beschrieben TAYLOR & SALVADOR anhand eines Alkoholpräparats aus einem Madrider Museum die Art Schistometopum garzonheydti. Sehr wahrscheinlich wurde das Präparat falsch katalogisiert und nicht nur der Fundort, sondern auch die Gattung, aufgrund des schlechten Zustandes, falsch bestimmt (Nussbaum & Pfrender 1998). Oder es handelt sich um eine Verwechslung mit Herpele squalostoma (STUTCH-BURY 1836), die tatsächlich auf Bioko heimisch ist.

Die beiden auf São Tomé lebenden Arten haben sich erst im späten Pleistozän getrennt, als infolge eines Vulkanausbruchs eine für bodenbewohnende Amphibien unüberwindbare Lavastrombarriere die Insel in eine Nord- und eine Südhälfte teilte. Die beiden nun isolierten Populationen passten sich an ihre jeweilige Klimaund Bodenbeschaffenheit an, welche im Norden trockener und im Süden feuchter ist. Nach der Erosion der Lavaströme und dem nachfolgenden Vegetationsschluss erweiterte sich der geeignete Lebensraum für angrenzende Schistometopum-Populationen und ihre Populationsgröße änderte sich. Infolgedessen kam es zum Kontakt der beiden Abstammungslinien in einer schmalen Hybridzone. Solche Hybridzonen werden durch Selektion gegen hybride Phänotypen aufrechterhalten, insbesondere wenn die Elternarten lokal an Umweltgradienten angepasst sind. Dies führte zu einer stabilen Hybridzone im Zentrum der Insel (O'CONNELL et al. 2021). Bei der südlichen Art, Schistometopum ephele, lassen sich außerdem genetisch noch drei verschiedene Kladen unterscheiden, die ebenfalls durch Vulkanismus und begrenzte Ausbreitungsfähigkeit entstanden sind (Stoelting et al. 2014).

Das wohl auffallendste Unterscheidungsmerkmal der beiden Arten ist ihre Färbung. Einfarbig gelbe Individuen findet man im Norden der Insel, dem Verbreitungsgebiet von Schistometopum thomense, und braun, oliv bis violett gesprenkelte Individuen treten häufiger im Südteil der Insel auf, dem Verbreitungsgebiet von Schistometopum ephele. Daneben gibt es auch Unterschiede in der Kopfform, dies ist allerdings auch ein Geschlechtsdimorphismus. Männchen haben größere Köpfe (Nussbaum & Pfrender 1998).

Lebensweise

Laut meiner Befragung der einheimischen Plantagenarbeiter ist *Schistometo- pum* unter- und oberirdisch aktiv, Letzteres besonders nach starken Regenfällen in der Nacht.

Ich konnte Schistometopum ausschließlich unter totem, organischem Material finden.

Im gebirgigen Zentrum der Insel fand ich sie in einem schattigen Komposthaufen mit abgestorbenen Bananenpflanzen und unter Baumstämmen am Straßenrand.

Im Süden der Insel fand ich Schistometopum ausschließlich im schattigen Primär-/Tieflandregenwald und dort auch wieder unter Totholz. Nach meinen Beobachtungen sind Exemplare aus dem zentralen Bergland oberhalb 800 m erheblich größer als Exemplare aus den südlichen Tieflandregenwäldern. Das könnte zum einen die bei Measey & Van Dongen 2006 beschriebene Bergmannsche Regel für Schistometopum auf São Tomé bestätigen, andererseits könnte dies aufgrund der Fundorte auch ein Artmerkmal sein. Nach einer inneren Befruchtung bringen die Weibchen lebende Jungtiere zur Welt. Bei Haft & Franzen (1996) wurden bei einer Terrariumnachzucht 14 Jungtiere im

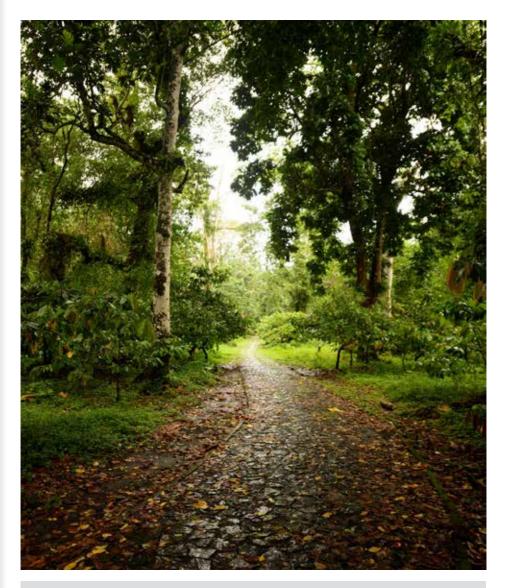


Abb. 5: typisches Habitat für *Schistometopum elephe*, schattige Primärwälder mit dichtem Unterwuchs und reichlich Totholz, im Südosten der Insel, 27.04.2022. Foto: S. VOITEL

Becken gefunden, die sehr wahrscheinlich von einem Weibchen stammen mussten. Ich konnte Anfang Mai im Tieflandregenwald in der Nähe von São João dos

Angolares ein frisch abgesetztes Jungtier finden. Sollte es eine Saisonalität bei den Geburten geben, fällt diese somit in die Regenzeit.

Literatur

BARBOZA DU BOCAGE, J.V. (1873): "Melanges erpetologiques." – Jornal de Sciencias Mathematicas Physicas e Naturaes, Lisboa, 4(XIV): 209-232

Boulenger, G.A. (1895): Third report on additions to the batrachian collection in the Natural History Museum. – Proc. Zool. Soc. London, 1894: 640-646

Burke, K. (2001): Origin of the Cameroon line of volcano-capped swells. – Journal of Geology, 109: 349-362

CARDOSO, J.C. & J.S. GARCIA (1962): Carta dos solos de São Tomé e Príncipe. – Memórias da Junta de Investigação do Ultramar, Segunda Série 39: 1-306 + 12 plates + 2 maps.

DINIZ, A.C. & G.C. MATOS (2002): Carta da zonagem agro-ecológica e da vegetação de S. Tomé e Príncipe. – Garcia de Orta, Série Botânica, 15(2): 1-72

HAFT, J. & M. FRANZEN (1996): Freilandbeobachtungen, Verhalten und Nachzucht der São Tomé-Blindwühle *Schistometopum thomense* (Bocage, 1873). – Herpetofauna, 18: 5-11.

Jones, P.J. (1994): Biodiversity in the Gulf of Guinea: an overview. – Biodiversity and Conservation, 3: 772-784

LAINS E SILVA, H. (1958): São Tomé e Príncipe e a cultura do café. – Memórias da Junta de Investigação do Ultramar, Segunda Série 1: I–XII + 1–499

MEASEY, G.J. & S. VAN DONGEN (2006). "Bergmann's rule and the terrestrial caecilian Schistometopum thomense (Amphibia: *Gymnophiona: Caeciliidae*)." – Evolutionary Ecology Research, 8: 1049-1059.

MEASEY, G.J., VENCES, M. & R.C. DREWES (2007): Freshwater paths into the ocean: molecular phylogeny of the frog *Ptychadena newtoni* gives insights into amphibian colonisation of oceanic islands. –Journal of Biogeography, 34: 7-20.

MIKULANE, S. (2019): Degradationsrisiken tropischer Waldökosysteme – Multifaktorielle Fernerkundungs- und GIS-basierte Modellierung der Landschaftsvulnerabilität. Umgesetzt am Fallbeispiel von São Tomé. – Universitätsbibliothek Heidelberg, Jahrg. 2019.

NUSSBAUM, R.A. & M.E. PFRENDER (1998): Revision of the African caecilian genus *Schistometopum* Parker (Amphibia: *Gymnophiona: Caeciliidae*). – Miscellaneous Publications. Museum of Zoology, University of Michigan, 187: 1-32.

O'CONNELL, K.A., PRATES, I., SCHEINBERG, L.A., MULDER, K.P. & R.C. BELL (2021): Speciation and secondary contact in a fossorial island endemic, the São Tomé caecilian. – Mol. Ecol., 30: 2859–2871.

PARKER, H.W. (1941): The caecilians of the Seychelles. – Annals and Magazine of Natural History, 11 (7): 1-17.

SCHLÜTER, T. (2008): Geological atlas of Africa. – 2nd ed. Berlin, Springer Verlag, Heidelberg.

STOELTING, R.E., MEASEY, G.J. & R.C. DREWES (2014): Population genetics of the São Tomé caecilian (*Gymnophiona: Dermophiidae: Schistometopum thomense*) reveals strong geographic structuring. – PLoS One, 9, e104628. https://doi.org/10.1371/journ al.pone.0104628.

STUTCHBURY, I. (1836): Description of a new species of the genus *Chamaeleon*. – Transactions of the Linnaean Society of London, 1(17): 362.

Eingangsdatum: 11.02.2023 Lektorat: I. Kraushaar

Autor

SEBASTIAN VOITEL
Spangenbergstraße 81
06295 Eisleben
E-Mail: sebastian.voitel@t-online.de

Chinesische Riesensalamander (Andrias cf. davidianus) in Schauhaltungen der letzten 70 Jahre in Deutschland und Österreich: Geschichte mit Verbindung zur privaten Haltung

Im Jahr 2012 erschien im Sekretär ein Artikel zur Geschichte der Haltung von Riesensalamandern in Europa von Wolf-Eberhard Engelmann (Ehemaliger Kurator Aquarium Zoo Leipzig) (ENGELMANN 2012). Darin wird überwiegend die Historie Japanischer Riesensalamander der Gattung *Andrias* in Europa beschrieben, aber auch die von Tieren aus China vor Allem in Bezug auf die Nachzucht dieser Art von Klaus Haker aus dem Jahr 1995 (HAKER 1995, 1997, ENGELMANN 2019). Aus Interesse an Zoogeschichte und bereits seit jeher bestehender (breit gefächerter) Faszination für Riesensalaman-

der (Abb.1) recherchierte ich weitere Details über die Geschichte Andrias spp. in 30 Zoos und Museen (insbesondere ab den 1950er Jahren) Deutschland. Österreich und der Schweiz (Grundt-NER 2023). Die Privathaltung ist untrennbar mit einigen dieser Jahrzehnte verwoben. so dass an dieser Stelle nun eine kurze Zusammenfassung mit Fokus auf diese Verbindungen erfolgt.

Anliegen des Beitrages soll es sein, einen Überblick über zumindest das (noch) nachvollziehbare bzgl. der Nachzuchten von Klaus Haker und anderen Verbindungen zur Privathaltung bzw. der Terraristik zu bieten. Angaben zu weiteren Tieren in Haltung anderer Herkunft finden sich in einem umfassenden Beitrag von mir (Grundtner 2023).

Zur Geschichte der Riesensalamander

Johann Jacob Scheuchzer sah 1726 im Fossilfund eines *Andrias scheuchzeri* aus Öhningen (Baden-Württemberg) den "die Sintflut bezeugenden Mensch". Auch

Abb. 1: Sammlung von Riesensalamanderfiguren aus China und v.a. Japan. Foto: P. Grundtner

heute noch finden sich Überraschungen. Im Jahr 2018 (YAN et al. 2018) konnten anhand der Analyse mitochondrialer DNA mindestens fünf unterschiedliche Linien in wildlebenden bzw. in Farmen gehaltenen chinesischen Riesensalamandern (2019 sogar sieben Linien, LI-ANG et al. 2019) identifiziert werden. Und im Jahr 2022 wurde je eine neue Art beschrieben (A. jiangxiensis (CHAIT et al. 2022) bzw. quasi "wiederentdeckt" (A. sligoi (BOULENGER 1924, TURVEY 2019)). Auch gab es immer wieder taxonomische Wendungen. Die für den beschriebenen Zeitraum für die Haltungsgeschichte bedeutendsten sind: 1940 beschrieben Pope & Boring Megalobatrachus japonicus davidianus. Liu widersprach dem Unterartniveau im Jahre 1950 und schrieb von Megalobatrachus davidianus. Günther E. Freytag verglich zuvor (FREYTAG 1943) drei Riesensalamander aus der Sammlung des Museums für Naturkunde und Vorgeschichte zu Magdeburg, davon ein im Mai 1942 im Zoo Leipzig verstorbener A. japonicus und ein im Hinterland von Canton (=Guangzhou), China gefangenes Tier (Sammlung Wolterstorff, gesammelt von Dr. Kreyenberg). Er sah in gesonderten Subspezies den "wahren verwandtschaftlichen Abstand" besser widergespiegelt als in der Vereinigung. In Form von Beschränkung auf das Artniveau fand sich der "Zwischenstand" noch lange in Bestandskarteien und sogar in Beschilderungen (z.B. Wilhelma Stuttgart: Bis in die 2000er Jahre als Megalobatrachus japonicus ausgeschildertes, weibliches Tier aus China). Zumindest im Gegensatz zu anderen Amphibien wurden überhaupt genauere Bestandslisten geführt. Auch Skelette waren nach den Zeiten von Scheuchzer und Co. noch Ouell für Diskussionen: Westphal verglich fossile A. scheuchzeri und die rezenten Megalobatrachus davidia-

nus und M. japonicus osteologisch und kam aufgrund fehlender Unterschiede und geographischer Gegebenheiten zu dem Schluss, dass es sich bei den letztgenannten M. spp. um Unterarten des A. scheuchzeri handeln soll (Westphal 1958). Estes (1981) vertrat die These zweier rezenter Arten (aufgrund von Unterschieden im Schädelbau): A. scheuchzeri und A. japonicus. So oder so, sind (historisch) gehaltene chinesische Tiere nicht zwingend Andrias davidianus. Tiere aus der Nachzucht sollen diesbezüglich genetisch untersucht worden sein. Die Ergebnisse sind allerdings nicht publiziert und daher an dieser Stelle nicht zu zitieren. Ab ca. den 1970er-Jahren werden in China Riesensalamander zu Verzehr und mittlerweile auch zu Forschungszwecken auf Farmen vermehrt (Browne et al. 2020, JIANG et al. 2023). Leider sind viele Tiere davon wie oben beschrieben "Farmmixe", welche leider auch wieder ausgesetzt werden. Millionen Jahre Entwicklung, kulturhistorisch bedeutsam und quasi die gesamte Geschichte der Tiergärtnerei der letzten 150 Jahre begleitend, geht nun vor allem bezogen auf China genetische Vielfalt verloren. Gerade erst entdeckt und schon (überwiegend) gegessen. Wie so vieles hat auch dies zwei Seiten: Ohne die Farmen gäbe es vermutlich deutlich weniger Salaman-

Weitere vermutete genetische Vielfalt kann im Einzelfall auch eher dokumentarisch begründet sein, wenn die Fundortangabe nicht eindeutig ist. So ist im Staatlichen Museum für Naturkunde in Stuttgart, ein CGS (Chinese Giant Salamander)-Jungtier (ca. 350 mm) in der Sammlung konserviert. Das Tier wurde von Dr. Heinz Wermuth gespendet, welcher es 1974 von Zdeněk Vogel erhielt. Der Fundort soll "Kukunov" (= See Kukunov, Zentralasien?) sein.

Riesensalamander heute

Im Jahr 2022 geschah einiges mit Bezug zu Riesensalamandern: Zwei Arten wurden (wieder)beschrieben, das Aquarium/ Terrarium des Zoo Dresden wurde geschlossen und Klaus Haker verstarb. Und das Weltgeschehen bietet viele Ansätze. die sich in der Riesensalamander-Dystopie von Karel Čapek ("Der Krieg mit den Molchen") wiederfinden. Eine Zeitenwende findet auch im Bereich von Zoo-Publikationen (Zooführer, Jahresberichte,...) statt, was im Rahmen der Recherchen deutlich wurde. Es wird weniger publiziert, viele Archive sind bereits aufgelöst. Auch private Foto- und Diasammlungen verschwinden oft beispielsweise aufgrund fehlender interessierter Erben. Allgemeine Abhilfe soll der neu gegründete Verein Zoo Archiv e.V. (www.zooarchiv.de. Dr. Klaus Schüling, Münster) schaffen. Bilddokumente selbst von jahrzehntelang gehaltenen Tieren wie Riesensalamandern. sind nicht für alle Jahrzehnte einfach zu finden. Gerade im Dämmerlicht mehr oder minder unbeweglich verharrende Tiere waren gerade im betrachteten Zeitraum vor der Verbreitung der Digitalfotografie nicht für Jedermann einfach zu dokumentieren (Verfügbares Material bitte direkt an den Autor senden).

Haltungen von Riesensalamandern

Ohne die Nachzucht (HAKER 1995, 1997) wäre auch die größere Anzahl von Zoohaltungen nicht denkbar gewesen. Viele Tiere erreichten aber auch schon vorher aus anderen Quellen die Bestände. Der Zoo Halle besaß beispielsweise sogar bereits 1936 kurzzeitig Tiere aus China, während ansonsten bis in die 1950er nur japanische (oder eben nicht...) Riesensalamander in Haltungen zu finden waren. Zusätzlich gab es auch Privatimporte und solche beispielsweise des ZFA (Zentraler Fachausschuss des ehemaligen

Kulturbundes) Terraristik der ehemaligen DDR. Ein Salamander mit Bezug zu terrarienkundlicher Literatur (Grosse 1984) befindet sich im Senckenberg Museum Dresden (Abb. 2). Zeigt der Artikel nur die Flanke des Tieres von Joachim Hammermeister, so findet sich im Vivaristik Ratgeber Nr. 8 von 1983 der Kopf abgebildet (GROSSE 1983). Zwar hat sich kaum eine Einrichtung zeitnah perspektivisch um eine Unterbringung jenseits der Schauhaltung bemüht, teilweise blieben die Bedingungen über Jahrzehnte mehr oder weniger unverändert, teilweise ergaben sich Veränderungen und Halterwechsel. Trotzdem lebten und leben einige Tiere sehr lange (Tab. 1). Bezüglich der Nachzucht gibt es zumindest Angaben zur weiteren Aufzucht durch Wolfgang Mudrack: aus ca. 600 Eiern schlüpften ca. 100 Larven (einige verstarben z.B. durch Cyclops im Wasser), 20 davon erreichten (MUDRACK 1997) in etwa einem Jahr 15-20 cm Länge und wuchsen nach weiteren 3 Jahren auf 35-70 cm heran (MUDRACK 2000). Die Elterntiere hielt Klaus Haker seit 1986 (1,2 als Leihgabe von Wolfgang Mudrack, 0,2 verstarben in den Folgejahren) bzw. 1994 (0,1 von Thomas Schöttler). Ersten unbefruchteten Laich gab es im selben Jahr. Mindestens das Männchen stammte aus dem Import (Abb.3) von Dr. Jürgen Fleck im Jahr 1973 bzw. 1974 (Engelmann 2012, Haker 1995, 1997). Das Weibchen verstarb an den Folgen einer schweren Bissverletzung und das Männchen wurde 1984 mit ca. 80 cm Gesamtlänge an das Landesmuseum Hannover abgegeben. Nach seinem Tod im Dezember 1998 wurde das ca. 1,1 m lange Tier im Museum präpariert. Das Skelett ist in der Ausstellung zu sehen. Nachzuchttiere wurden an Zoos und an private Halter abgegeben. Ein besonderes Beispiel ist Dieter Wimmer, welcher in Stuttgart-Hoffeld in einem 2000 l fassenden Freilandbecken ganzjährig einen im Jahr 2008 ca. 80

cm langen Riesensalamander hielt (KWET 2008). Das Becken wurde nach einem erfolgreichen Ausbruchsversuch über den Filter, ohne einen solchen betrieben. Stattdessen nur mit Oxydator. Saisonal war das Wasser durch Algenbewuchs dementsprechend grün und trüb. Das Besondere war dabei: Das Becken befand sich auf der ausgebauten, sonnenexponierten Dachterrasse eines Mehrfamilienhauses.

Zoologische Gärten

Berlin

Der Zoo Berlin, bzw. das Aquarium, hielten schon sehr lange *Andrias* (bis in die 1980er Jahre teils sogar erfolgreicher als später), bis ab 01/2007 der Zoo Köln 1,0 aus der Nachzucht einstellte. Dieses Tier ("Natalie") wurde 05/2014 gegen 0,0,3 Jungtiere (Zoo Prag, 01/2013 aus/über Korea erhalten) getauscht, zwei dieser Tiere

Institution (letzter Halter)	Geschlecht	Alter bei Tod (Jahre)	GL	Gewicht
Chemnitz	M	>27 lebt (02/2022).	>110 cm	?
	F	>27 lebt (02/2022)	>120 cm	?
Dresden	F	24,5	127 cm	>28 kg
Düsseldorf,Rotterdam, London	M	mind.18,8 evtl. >50	138,5 cm	36,5 kg
Düsseldorf	F	6	?	?
	F	7	?	?
Köln	?	2	?	?
	?	2	?	?
	?	>6	?	?
	?	>10	?	?
	F	>16	?	?
	M	>21	?	?
	F	>27	>125 cm	22,7 kg
	M	>27 lebt (02/2023)	>130 cm	>>20 kg
Schmiding	?	>11	?	?
Wien (Schönbrunn)	M	>14	>110 cm?>60 cm?	?
	F	>17	>110cm?>60 cm?	?
Wien (HdM)	M?	ca. 9	?	?
	M?	>24	>120 cm	?
Köln,Berlin, Prag	M	>27 lebt (03/2022)	>120 cm	?
Schmiding, Prag	М	>27 lebt (03/2022)	>120 cm	?
(evtl.) Duisburg	М	>19	ca.130 cm	?
	F	>19	ca.130 cm	?

Tab. 1: Lebensdauer, Länge und Gewicht von (möglichen) A.cf. davidianus -NZ 1995 in Zoos

wurden 12/2014 weiter nach Köln transferiert. Natalie lebte 2022 noch im Zoo Prag.

Chemnitz

Im April 1996 erhielt der Tierpark 5 Nachzuchttiere. Drei davon gelangten in den Zoo Dresden. Die Zwei aktuell (03/2023) noch lebenden Tiere (Abb.4) sind im Tierpark zu besichtigen. Nach sonographischer Geschlechtsbestimmung (IZW Berlin) wurde das mit ca. 1,1 m kleinere der beiden Männchen von 08/2013 bis 05/2017 an den Zoo Dresden (Zuchtversuch) ausgeliehen. Das Geschlecht wurde bestätigt. Spätere Untersuchungen ergaben: Der in Chemnitz verbliebene größere Riesensalamander ist doch ein Weibchen.

Dresden

Im Zoo wurden ab 1959 bereits zweimal Chinesische Riesensalamander ge-

halten, bis 12/2001 erneut Tiere in den Bestand gelangten. Drei ca. 30 cm lange NZ-Tiere wurden vom Tierpark Chemnitz eingestellt, verstarben aber binnen drei Tagen. Wolfgang Mudrack gab im selben Monat einen 65 cm langen Jungsalamander an den Zoo ab. Das Weibchen lebte bis zum Umbau des ehemaligen Aquariums der Borneo-Flussschildkröten (Callagur borneensis) im Eingangsbereich des ehemaligen Terrariums, zwischen 2007 und 02/2011 in einem Behelfspool im Geierfelsen bei ca. max. 15°C. In der Zeit von 08/2013 bis 05/2017 fanden erfolglose Zuchtversuche mit dem Chemnitzer Männchen statt. Im April 2020 verstarb das Weibchen.

Düsseldorf

2016 verstarb "Professor Wu" im ZSL Zoo London mit 138,5 cm und über 36 kg. Der Salamander war 2014 aus dem Dier-

Abb. 2: Männchen von *Andrias* cf. *davidianus* im Tierpark Chemnitz 12/2021. Foto: P. Grundtner.

Abb. 3: CGS-Tier von Joachim Hammermeister in der herpetologischen Sammlung Senckenberg Museum Dresden. Foto: P. Grundtner.

gaarde Blijdorp in Rotterdam übernommen worden, wohin er 2009 aus dem AquaZoo gelangte. Er besaß nicht funktionsfähige und mit Haut überwachsene Augen. Laut offizieller Dokumentation war er eine NZ 1995. Allerdings soll das Zuchtmännchen von Klaus Haker über den AquaZoo nach Rotterdam abgegeben worden sein, das Weibchen sei in eine Privathaltung in Österreich gelangt (ENGEL-MANN 2012). Im Naturhistorischen Museum Wien befindet sich allerdings ein konservierter männlicher Chinesischer Riesensalamander, der 2012 bei einem Privathalter verstarb und ebenfalls als das Zuchtmännchen bekannt ist. Aufgrund uneindeutiger Dokumentation ist es sogar noch komplizierter: Ein im AquaZoo gehaltenes Tier sei ursprünglich 1987 in Hongkong erworben (CITES) worden. Es könnte sich aber auch um ein 2001 verstorbenes Weibchen handeln, welches 1995 von K. Haker zum AquaZoo gelangte. Dieses Tier könnte auch ein von Wolfgang Mudrack eingestelltes Männchen gewesen sein. 2002 verstarb ein weiteres Tier (seit 1995 im Bestand). Auch gibt es Hinweise dafür, nach welchem "Professor Wu" ab 1975/1976 im Bestand gewesen war, möglicherweise zusammen mit einem weiteren Tier. Evtl. spielt aber auch eine Verwechslung mit dem Importjahr des Zuchtmännchens von 1995 eine Rolle? Im Jahr 2008 wurden 0,2 (NZ 1995) an das Kölner Aquarium am Zoo abgegeben.

Duisburg

Ab 1969 hielt der Zoo Duisburg Chinesische Riesensalamander; zunächst in einem Teil der späteren "Tonina-Station" (Inia geoffrensis humboldtiana) und später in einem kleinen Außenbecken (bzw. hinter den Kulissen) bis 2014 eine neue Anlage eingeweiht wurde. Vor dem Einsetzen wurden die bisher "seit rund 25 Jahren" hinter den Kulissen gehaltenen und ca. 130 cm langen 1,1 positiv auf Batrachochytrium dendrobatidis getestet und behandelt. Beide Tiere sollen auch der DNZ 1995 entstammen (LANGER 2014), welche 2014 allerdings erst knapp 20 Jahre in der Vergangenheit lag. Die Tiere verstarben 2015 und wurden 2016 durch 1,1 (Import 2013 Zoo Prag) ersetzt.

Köln

Im neuen Aquarium lebte von 1970 bis 1982 ein CGS; danach erst 1996 wieder, als der Zoo 7 NZ-Jungtiere erwarb. 1997 verstarben zwei, 2002 und 2006 je ein weiteres Tier, ab 2007 wurde eines im Zoo-Aquarium Berlin gehalten. 2008 stellte der AquaZoo Düsseldorf 0,0,2 Nachzuchttiere von K. Haker ein. In 03/2012 verstarb

ein Weibchen der Düsseldorfer mit Legenot. Im Jahr 2013 wurden in vitro-Zellkultur Biopsaten aus der Schwanzspitze mit Proben aus Köln und Berlin durchgeführt (Strauss et al. 2013). Im Jahr 2013 kam es zur Ablage von unbefruchtetem Laich. Im Jahr 2021 lebten 1,1,1 im Kölner Aquarium, wobei das bereits 2009 124 cm lange und 17 kg schwere Männchen bis 2020 im letzten Becken des Rheinpanoramas (danach mit einem Jungtier (China NZ 2011) aus dem Zoo Prag besetzt) zu sehen war. Aktuell 03/2023 lebt es hinter den Kulissen. Dort befand sich auch das Weibchen (Düsseldorfer Tier), bis es 2023 verstarb.

Österreich

2014 reiste ein adultes Tier der NZ 1995 als Weibchen aus dem Zoo Schmiding nach Prag und lebt seitdem als Männchen "Šmíca (Schmitza)" dort im Zoo.

Vier NZ-Salamander wurden 10/2007 für den Aquazoo des Zoo Schmiding und zwei Wiener Einrichtungen durch Günter Schultschick von Thomas Schöttler und Jürgen Fleck aus Deutschland abgeholt. Ein Tier soll zeitnah verstorben sein. Je ein weiteres Tier war für den Tiergarten Schönbrunn und das Haus des Meeres (HdM) bestimmt. In Schönbrunn war bereits zuvor ein 98 cm langes Tier aus der NZ 1995 eingetroffen. Ende 2012 war noch 0,1 im Bestand (TBL), der Jahresbericht 2009 dagegen listete noch 1,0,1. Zuchtversuche mit privat gehaltenen Männchen führten anscheinend zu Beissereien mit Todesfolge. Im HdM konnte 2007 "Alois 2" ersetzt werden (ebenfalls ein NZ-Tier), welcher im Sommer 2002 (wohl auch eine Haker NZ) erworben werden konnte und etwa 2004 verstarb. Das 2007 eingetroffene Tier verstarb 2020. Im Jahr 1982 bis

Abb. 4: Jungtier Andrias cf. davidianus von Dr. Jürgen Fleck, seit 02/1983 in der herpetologischen Sammlung Senckenberg Museum Frankfurt. Foto: Department of Herpetology. Senckenberg Gesellschaft für Naturforschung Frankfurt.

1997 hielt das HdM Alois 1. Die Wiener Salamander lieferten auch Daten für eine beeindruckende Arbeit über das Saugschnappen (Heiss et al. 2013). Die Schönbrunner Tiere waren zum Zeitpunkt der Messungen 62 und 114 cm lang, Alois 2 der 2., 118 cm.

Danksagung

Ergänzend zum Beitrag von GRUNDT-NER (2023) gilt mein Dank an PD Dr. Wolf-Rüdiger Große (Landsberg) für Literatur, Hintergründe sowie Unterstützung bei einigen Recherchen. PD Dr. Alexander Kupfer (Stuttgart) danke ich für die Recherche der mysteriösen Fundortangabe, ohne Dr. Axel Kwet hätte ich lange nach der Quelle für die Erinnerung an einen Riesensalamander über den Dächern Stuttgarts gesucht.

Literatur

BOULENGER, E. G. (1924): On a new giant salamander, living in the Society's gardens. – Proceedings of the Zoological Society of London, 94(1): 173-174.

Browne, R. K., Wang, Z., Okada, S., McGinnity, D., Luo, Q., Taguchi, Y., Kilpatrick, D., Hardman, R., Janzen, P., Zhang, Z., Geng, Y. (2020): The Sustainable Management of Giant Salamanders (Cryptobranchoidea). Review. – Sustainability America. 1-46. Quelle:

https://www.researchgate.net/publication/345345818_The_Sustainable_Management_of_Giant_Salamanders_Cryptobranchoidea.

Chai, J., Lu, C. Q., Yi, M. R., Dai, N. H., Weng, X. D., Di, M. X., Peng, Y., Tang, Y., Shan, Q. H., Wang, K., Liu, H. Z., Zhao, H. P., Jin, J. Q., Cao, R. J., Lu, P., Luo, L. C., Murphy, R. W., Zhang, Y. P. & J.Che (2022): Discovery of a wild, genetically pure Chinese giant salamander creates new conservation opportunities. – Zoological Research, 43: 469-480.

ENGELMANN, W.-E. (2012): Zur Geschichte der Haltung von Riesensalamandern in Europa. – Sekretär, 12(1/2): 3-23.

ENGELMANN, W.-E. (2019): Die Familie von Siebold und ihre Riesensalamander. – Sekretär, 19: 48-54.

Estes, R. (1981): Gymnophiona, Caudata. – Handbuch der Paläoherpetologie. Gustav Fischer Verlag, Jena.

FREYTAG, G. (1943): Die Unterarten des Riesensalamanders (*Megalobatrachus japonicus* TEMM.). – Wochenschrift und Blätter für Aquarien- und Terrarienkunde, 40: 88-90.

GROSSE, W.-R. (1983): Olme, Molche, Salamander. – Vivaristik Ratgeber 8. Neumann Verlag. Leipzig-Radebeul.

GROSSE, W.-R. & J. HAMMERMEISTER (1984): Aquatile Amphibien. Der Chinesische Riesensalamander. – Elaphe, 1/84: 10-12.

GRUNDTNER, P. (2023): Riesensalamander (*Andrias* spp.) in Schauhaltungen (Deutschland, Österreich, Schweiz) der letzten 70 Jahre. – TIERGARTEN – Magazin für Zoointeressierte, 3(4): (In Bearbeitung).

HAKER, K. (1995): Bau einer Zuchtanlage für Andrias davidianus und erste Beiträge zur Haltung (Stand: Dezember 1994). – DGHT AG Urodela Info, 8: 4-7.

HAKER, K. (1997): Haltung und Zucht des Chinesischen Riesensalamanders *Andrias davidianus*. – Salamandra, 33(1): 69-78.

Heiss E., Natchev, N., Gumpenberger, M., Weissenbacher, A. & S. Van Wassenbergh (2013): Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism. – Journal of the Royal Society, Interface. 10(82): 20121028.

JIANG, W., TIAN, H. & L. ZHANG (2023): Husbandry, Captive Breeding, and Field

Survey of Chinese Giant Salamander (Andrias davidianus). – In: Seifert, A.W., Currie, J.D. (eds): Salamanders. - Methods in Molecular Biology, Vol 2562: 75-92.

KWET, A. (2008): Eine Dachoase für Reptilien. – Terraria, 11:3(3): 90-93.

LIANG, Z.-Q., CHEN, W.-T., WANG, D.-Q., ZHANG, S.-H., WANG, C.-R., HE, S.-P., WU, Y.-A., HE, P., XIE, J., LI, C.-W., MERILÄ, J. & Q.-W. WEI (2019): Phylogeographic patterns and conservation implications of the endangered Chinese giant salamander. – Ecology and Evolution, 9: 3879-3890.

LANGER, S., TERNES, K. & L. WIEG-MANN (2014): Eine neue Anlage für Chinesische Riesensalamander (*Andrias davidianus*)-Umzug mit Hindernissen. – In: 34. Arbeitstagung der Zootierärzte im deutschsprachigen Raum. – Opel Zoo Kronberg (2015): 169-177.

LIU, C.-C. (1950): Amphibians of western China. – Fieldiana. Zoology Memoires, Vol. 2, 400 pp.

MUDRACK, W. & K. HAKER (1997): Beobachtungen bei der Aufzucht des chinesischen Riesensalamanders *Andrias davidianus*. – Elaphe, 5(2): 89-91.

MUDRACK, W. (2000): Weitere Beobachtungen bei der Aufzucht des Chinesischen Riesensalamanders, *Andrias davidianus*. – Elaphe, 8(2): 96.

POPE, C. H. & A.M. BORING (1940): A survey of Chinese Amphibia. – Peking Natural History Bulletin, 15: 13-86.

STRAUSS, S., ZIEGLER, T., ALLME-LING, C., REIMERS, K., FRANK-KLEIN, N.,

SEUNTJENS, R. & P.M. VOGT (2013): In vitro culture of skin cells from biopsies from the critically endangered Chinese giant salamander, *Andrias davidianus* (BLANCHARD, 1871) (Amphibia, Caudata, Cryptobranchidae). – *Amphibian and Reptile Conservation*, 5(4): 51-63.

Turvey, S. T., Marr, M. M., Barnes, I., Brace, S., Tapley, B., Murphy, R. W., Zhao, E. & A.A. Cunningham (2019): Historical museum collections clarify the evolutionary history of cryptic species radiation in the world's largest amphibians. – Ecology and Evolution, 9: 10070-10084.

Westphal, F. (1958): Die Tertiären und rezenten Eurasiatischen Riesensalamander. – Palaeontolographica, Abteilung A, 110: 20-92.

Yan, F., Lü, J., Zhang, B., Yuan, Z., Zhao, H., Huang, S., Wei, G., Mi, X., Zou, D., Xu, W., Chen, S., Wang, J., Xie, F., Wu, M., Xiao, H., Liang, Z., Jin, J., Wu, S., Xu, C.-S., Tapley, B., Turvey, S.-T., Papenfuss, T. J., Cunningham, A. A., Murphy, R. W., Zhang, Y. & J. Che (2018): The Chinese giant salamander exemplifies the hidden extinction of cryptic species. – Current Biology, 28: R581-R598.

Eingangsdatum: 18.3.2023 Lektorat: I. Kraushaar

Autor

PHILIPP GRUNDTNER 90762 Fürth Email: philippgrundtner@web.de

amphibia - Magazin - Jubiläum

Abb. 1: Blick in die Schauvitrine mit Wirbeltierskeletten der Sammlung des Zentralmagazins Naturwissenschaftlicher Sammlungen der Universität Halle. Oben rechts das Skelett eines Japanischen Riesensalamanders. Foto: W.-R. Grosse

Wir gratulieren an dieser Stelle ganz herzlich im Namen der ganzen AG Urodela-Familie unserem Jubilar Manfred Hädelmann zum 90. Geburtstag. Jedes Jahr wieder kommt er seit 1994 zur Urodela-Tagung nach Gersfeld und wir freuen uns immer wieder auf seinen Besuch. Immer in der ersten Reihe rechts zu sitzen ist ein Privileg, dass wir ihm noch viele Jahre gewähren möchten, ebenso seine stets konkreten Fragen beantworten und freundlich auf ein Pausengespräch mit ihm zu warten. Alles Gute und noch viele schöne gemeinsame Stunden in Gersfeld

Deine AG URODELA

Beiträge zur Kenntnis der Amphibien

zugleich Mitteilungsblatt der Arbeitsgemeinschaft Urodela in der DGHT

